

FDFMA3N109

Integrated N-Channel PowerTrench® MOSFET and Schottky Diode

General Description

This device is designed specifically as a single package solution for a boost topology in cellular handset and other ultra-portable applications. It features a MOSFET with low input capacitance, total gate charge and onstate resistance, and an independently connected schottky diode with low forward voltage and reverse leakage current to maximize boost efficiency.

The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to switching and linear mode applications.

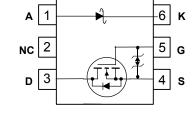
Features

MOSFET:

• 2.9 A, 30 V $R_{DS(ON)}$ = 123 m Ω @ V_{GS} = 4.5 V

 $R_{DS(ON)}$ = 140 m Ω @ V_{GS} = 3.0 V

 $R_{DS(ON)} = 163 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$


Schottky:

- V_F < 0.46 V @ 500mA
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level = 1.8kV typical (Note 3)
- RoHS Compliant

MicroFET 2x2

Absolute Maximum Ratings TA=25°C unless otherwise noted

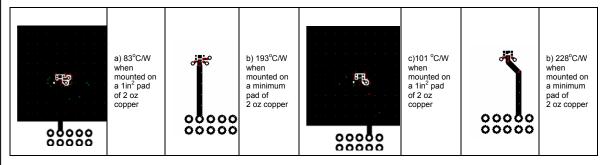
Symbol	Parameter		Ratings	Units	
V _{DS}	Drain-Source Voltage		30	V	
V _{GS}	Gate-Source Voltage		±12	V	
I _D	Drain Current – Continuous (T _C = 25°C, V _{GS} = 4.5V)		2.9		
	- Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 2.5V$)		2.7	Α	
	– Pulsed		10		
P _D	Power Dissipation for Single Operation	(Note 1a)	1.5	W	
	Power Dissipation for Single Operation	(Note 1b)	0.65	VV	
T_J , T_{STG}	Operating and Storage Temperature		-55 to +150	°C	
V_{RRM}	Schottky Repetitive Peak Reverse Voltage		28	V	
Io	Schottky Average Forward Current		1	Α	

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	83	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	193	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	101	C/VV
R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1d)	228	

Package Marking and Ordering Information

		J : : : : :			
	Device Marking	Device	Reel Size	Tape width	Quantity
_	109	FDFMA3N109	7"	8mm	3000 units


Symbol	Parameter	Test Condit	ions	Min	Тур	Max	Units
Off Char	acteristics			ı			
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_D = 250$) μ A	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Reference			25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \qquad V_{GS} = 0$) V			1	μА
I _{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$) V			±10	μА
On Char	acteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 250$	Ο μΑ	0.4	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Reference	ed to 25°C		-3		mV/°C
		$V_{GS} = 4.5V, I_D = 2.9A$			75	123	
		$V_{GS} = 3.0V, I_D = 2.7A$			84	140]
R _{DS(on)}	Static Drain–Source	$V_{GS} = 2.5V, I_D = 2.5A$			92	163	mΩ
_ = (=)	On–Resistance	$V_{GS} = 4.5V, I_D = 2.9A, T_{CS} = 4.5V$			95	166	ŀ
		$V_{GS} = 3.0V, I_D = 2.7A, T_{CS}$			138 150	203 268	ł
D	Ob a walata wilati a a	$V_{GS} = 2.5V, I_D = 2.5A, T_{CS}$	1 _C = 150 C		150	200	
C _{iss}	Input Capacitance	N 45 N N 6		1	190	220	pF
Coss	Output Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0$ f = 1.0 MHz) V,		30	40	рF
	Reverse Transfer Capacitance	1 - 1.0 MHZ			20		
C _{rss}	Gate Resistance	V _{GS} = 0 V, f = 1.0 I	MHz		4.6	30	pF Ω
		V GS V V, 1 1.01	1711 12		7.0		32
	g Characteristics (Note 2)	V _{DD} = 15 V, I _D = 1 A		T	6	12	no
t _{d(on)}	Turn-On Delay Time Turn-On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 1.5 \text{ V}$			8	16	ns
t _r					12	21	ns
t _{d(off)}	Turn-Off Delay Time						ns
t _f	Turn-Off Fall Time	V _{DS} = 15 V, I _D = 2.9	Α		2	4	ns
Q _g	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_D = 2.9$ $V_{GS} = 4.5 \text{ V}$	А,		2.4	3.0	nC
Q _{gs}	Gate–Source Charge	- VGS - 4.5 V			0.35		nC
Q _{gd}	Gate-Drain Charge				0.75		nC
	ource Diode Characteristics			1	1	0.0	1 4
Is	Maximum Continuous Drain–Source	+	Į.			2.9	Α
V_{SD}	Drain–Source Diode Forward Voltage	I _S = 2.0 A		+	0.9	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_S = 1.1 \text{ A}$ $I_F = 2.9 \text{ A}$			0.8	1.2	ns
Q _{rr}	Diode Reverse Recovery Charge	dI _F /dt = 100 A/µs			2		nC
	Diode Characteristics				I		
_		Т.	= 25°C		10	100	μА
I_R	Reverse Leakage	V _D = 78 V	= 85°C		0.07	4.7	mΑ
\ /	Forward Voltage	Т.	= 25°C	1	0.50	0.57	
V_{F}		$I_F = 1 \text{ A}$ $T_J = 85^{\circ}\text{C}$			0.49	0.60	V
· ·	Forward Voltage	I _E = 500 mA T _J	= 25°C		0.40	0.46	V
V_{F}	i orwaru voltage	T.	= 85°C		0.36	0.43	, v

Electrical Characteristics

T_A = 25°C unless otherwise noted

Notes:

- 1. R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.
 - (a) MOSFET R_{0JA} = 83°C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB
 - (b) MOSFET $R_{\theta JA}$ = 193°C/W when mounted on a minimum pad of 2 oz copper
 - (c) Schottky $R_{\theta JA}$ = 101°C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB
 - (d) Schottky $R_{\theta JA}$ = 228°C/W when mounted on a minimum pad of 2 oz copper

Scale 1:1 on letter size paper

- **2.** Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%
- 3: The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics

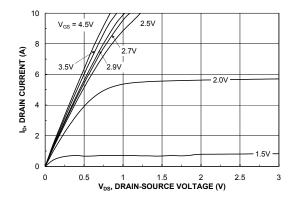


Figure 1. On-Region Characteristics.

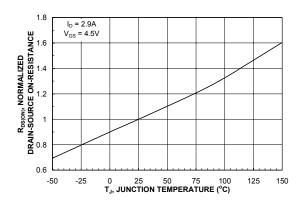


Figure 3. On-Resistance Variation with Temperature.

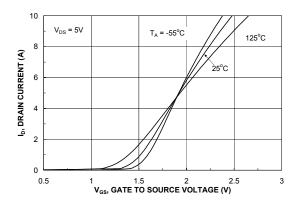


Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

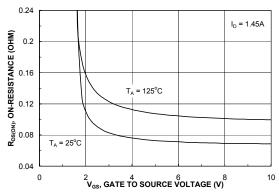


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

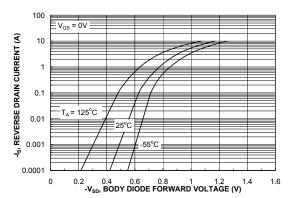
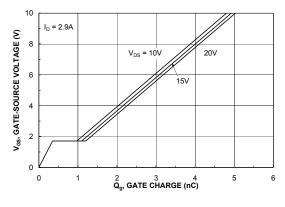



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

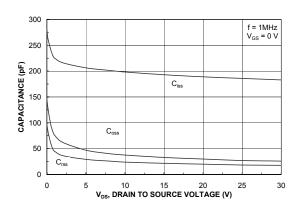
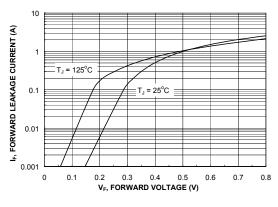



Figure 7. Gate Charge Characteristics.

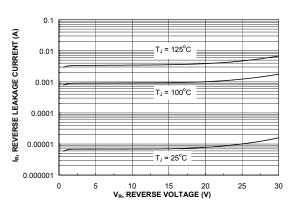


Figure 9. Schottky Diode Forward Voltage.

Figure 10. Schottky Diode Reverse Current.

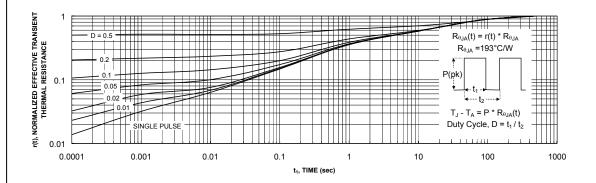
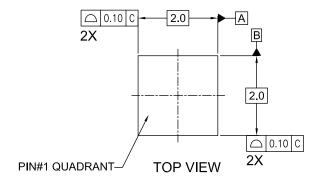
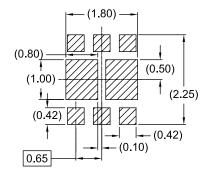
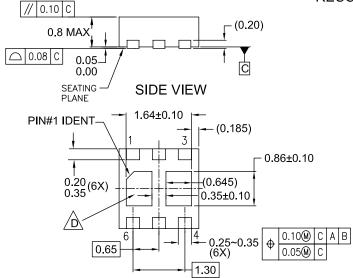




Figure 11. Transient Thermal Response Curve.


Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION VCCC EXCEPT AS NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- NON-JEDEC DUAL DAP
- E. DRAWING FILE NAME : MLP06J rev3

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

, a = ®	-DOT		®
ACEx [®]	FPS™	PDP-SPM™	The Power Franchise®
Build it Now™	F-PFS™	Power-SPM™	puwer
CorePLUS™	FRFET®	PowerTrench®	p wer franchise
CorePOWER™	Global Power Resource SM	Programmable Active Droop™	TinyBoost™
CROSSVOLT TM	Green FPS™	QFET [®]	TinyBuck™
CTL™	Green FPS™ e-Series™	QS™	TinyLogic [®]
Current Transfer Logic™	GTO™	Quiet Series™	TINYOPTO™
EcoSPARK [®]	IntelliMAX™	RapidConfigure™	TinyPower™
EfficentMax™	ISOPLANAR™	Saving our world 1mW at a time™	TinyPWM™
EZSWITCH™ *	MegaBuck™	SmartMax™	TinyWire™
EZ [™]	MICROCOUPLER™	SMART START™	µSerDes™
	MicroFET™	SPM [®]	\mathcal{U}
	MicroPak™	STEALTH™	/ Ser <mark>Des</mark> [™]
Fairchild [®]	MillerDrive™	SuperFET™	UHC®
Fairchild Semiconductor®	MotionMax™	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	Motion-SPM™	SuperSOT™-6	UniFET™
FACT [®]	OPTOLOGIC [®]	SuperSOT™-8	VCX™
FAST [®]	OPTOPLANAR [®]	SuperMOS™	VisualMax™
FastvCore™	(I)®	SYSTEM ®	
FlashWriter [®] *		L GENERAL	

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition		
		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. I34